Microstructurally based cross-slip mechanisms and their effects on dislocation microstructure evolution in fcc crystals

نویسندگان

  • Ahmed M. Hussein
  • Satish I. Rao
  • Michael D. Uchic
  • Dennis M. Dimiduk
  • Jaafar A. El-Awady
چکیده

Three newly identified cross-slip mechanisms from atomistic simulations of fcc crystals, namely surface, bulk and intersection cross-slip types, were hierarchically informed into discrete dislocation dynamics simulations. The influence of each cross-slip type on the evolution of the dislocation microstructure in face-centered cubic microcrystals having different crystal sizes and initial dislocation densities was investigated. Dislocation pattern formation, surface slip localization and initial strain hardening were observed, in agreement with experimental observations, and possible explanations are given in the light of these simulations. 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

From dislocation junctions to forest hardening.

The mechanisms of dislocation intersection and strain hardening in fcc crystals are examined with emphasis on the process of junction formation and destruction. Large-scale 3D simulations of dislocation dynamics were performed yielding access for the first time to statistically averaged quantities. These simulations provide a parameter-free estimate of the dislocation microstructure strength an...

متن کامل

Calculations of intersection cross-slip activation energies in fcc metals using nudged elastic band method

The nudged elastic band (NEB) method is used to evaluate activation energies for dislocation intersection cross-slip in face-centered cubic (fcc) nickel and copper, to extend our prior work which used an approximate method. In this work we also extend the study by including Hirth locks (HL) in addition to Lomer–Cottrell locks and glide locks (GL). Using atomistic (molecular statics) simulations...

متن کامل

Spontaneous athermal cross-slip nucleation at screw dislocation intersections in FCC metals and L12 intermetallics investigated via atomistic simulations

In this manuscript, we extend on our prior work to show that under certain conditions cross-slip nucleation is athermal and spontaneous with zero activation energy in FCC elemental metals such as Ni and Cu, and L12 intermetallic compounds such as Ni3Al. Using atomistic simulations (molecular statics), we show that spontaneous cross-slip occurs at mildly repulsive intersections. Further, the loc...

متن کامل

Some aspects of cross-slip mechanisms in metals and alloys

2014 Dislocation cross slip in FCC and HCP metals has been described in terms of various models. The development of these models is reviewed and their predictions are compared with recent experimental observations. Some macroscopic features of plastic deformation (creep activation energies, strength anomalies and deformation stages) are examined in the light of these microscopic mechanisms. J. ...

متن کامل

Activated states for cross-slip at screw dislocation intersections in face-centered cubic nickel and copper via atomistic simulation

We extend our recent simulation studies where a screw dislocation in face-centered cubic (fcc) Ni was found to spontaneously attain a low energy partially cross-slipped configuration upon intersecting a forest dislocation. Using atomistic (molecular statics) simulations with embedded atom potentials, we evaluated the activation barrier for a dislocation to transform from fully residing on the g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014